Exercise 7.8.3

Solve the Bernoulli equation $y^{\prime}+x y=x y^{3}$.

Solution

Divide both sides by y^{3}.

$$
y^{-3} y^{\prime}+x y^{-2}=x
$$

Make the substitution $u=y^{-2}$. Then $u^{\prime}=-2 y^{-3} y^{\prime}$ by the chain rule.

$$
-\frac{1}{2} u^{\prime}+x u=x
$$

Multiply both sides by -2 .

$$
u^{\prime}-2 x u=-2 x
$$

This is a first-order linear ODE that can be solved by multiplying both sides by an integrating factor I.

$$
I=\exp \left(\int^{x}-2 s d s\right)=e^{-x^{2}}
$$

Proceed with the multiplication.

$$
e^{-x^{2}} u^{\prime}-2 x e^{-x^{2}} u=-2 x e^{-x^{2}}
$$

The left side can be written as $d / d x(I u)$ by the product rule.

$$
\frac{d}{d x}\left(e^{-x^{2}} u\right)=-2 x e^{-x^{2}}
$$

Integrate both sides with respect to x.

$$
e^{-x^{2}} u=\int^{x}\left(-2 s e^{-s^{2}}\right) d s+C
$$

Let $v=-s^{2}$. Then $d v=-2 s d s$.

$$
\begin{aligned}
e^{-x^{2}} u & =\int^{-x^{2}} e^{v} d v+C \\
& =e^{-x^{2}}+C
\end{aligned}
$$

Multiply both sides by $e^{x^{2}}$.

$$
u(x)=1+C e^{x^{2}}
$$

Now that the ODE is solved, change back to y.

$$
y^{-2}=1+C e^{x^{2}}
$$

Invert both sides.

$$
y^{2}=\frac{1}{1+C e^{x^{2}}}
$$

Therefore, taking the square root of both sides,

$$
y(x)= \pm \sqrt{\frac{1}{1+C e^{x^{2}}}} .
$$

